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fn the following article boundary layer equations are deduced for a fully ionised two- 
temperature pIasma. It is assumed that the pIasma can be described by the equations de- 
veloped in [I]: incorporating the simplifications of [2]. If we study the behavior of the 
temperature cIose to the walls in a two-temperature plasma, weare faced with two temper- 

ature boundary layers, namely, au electronic boundary layer (where there are sharp changes 
in electron temperatures) and an ionic boundary layer (where ionic temperatures evince 
sharp change). Equations are derived for the electronic and ionic boundary layers. It is 
established that the thickness of the electronic boundary layer is much greater than that 
of the ionic temperature boundary layer. An approximate method is given for evaluation of 
boundary layers in two-temperature plasmas. Cases in which electronic temperature 
boundary layer is absent, are given. 

Apart from the existence of boundary layers exhibiting sharp temperature changes in 
electrons andions, it is also shown that a two-temperature conducting plasma can embody 
a specific ‘screening’, boundary layer adjacent to the wall, in which any temperature dif- 
ference of electrons and ions caused by outside sources close to the wall culminates in 
values determinable by the combined action of viscosity, Joule heat generation and heat 
conductivity- consistent with the aforementioned equations. The thickness of this layer 

6 - I/xi / y is,over a wide range of defining parameters, much less than that of the dy- 
namic or the ionic boundary layer. 

The behavior of the electron and ion temperatures within the layer is investigated. 
We also show that a thin ‘screening’ layer of thickness 1 --L / y@, can be established 
in the external stream, when the viscosity and the thermal conductivity of the medium can 
be neglected, It is in this layer, that sharp changes in electron and ion temperature dif- 

ferences from those caused by external sources at some sections of the stream, e.g. at the 

entry to the channel,up to those determined by Joule heating in accordance with the equa- 
tions for the external streamtare set up. These layers are the characteristic feature of two- 

temperature plasma, in single-temperature plasma they do not exist. 

Notation. 
We shall use the suffix e to denote quantities relating to electrons, i to ions. Index o 

denotes dimensioness quantities, w denotes the values near the wall, whilst 6 defines the 

values at the distance 6 from the wall and m denotes values outside the stream at infinity. 
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n is the number of particles in p, and rr are the pressure and the 

unit volume : tensor of viscous stresses ; 

p is the density of mixture ; E and Ii are the electric and mag- 

m is the mass of a particle; netic fields ; 

V, and Vi are the mean velocities of j is the current density ; 
electron and ion components ; Te and Ti are the electron and ion 

V (V u 
xY 

) is the mean velocity of mixture; temperatures ; 

o is the cycfotron frequency; q is the heat flux; 

c is the velocity of light ; 

y is the coefficient preceding temperature difference between electrons 

and ions in the energy equations; 

7e and 7i is the time interval between collisions of electrons and ions respectively. 

N&T and U is the characteristic number of particles per unit volume, length, temper- 

ature and velocity of the medium respectively; 

%,i’ Xt?,P and u are the coefficients of viscosity, thermal conductivity and the conductance 

of the medium ; 

b, 6 er and si are the thicknesses of the viscous, the electron-temperature and ionic- 

temperature magnetohydrodynamic boundary layers 

8 is the thickness of the &layer in which the temperature differences between 

the electrons and ions within the therm&y conducting plasma change sharply 

from the values determined by external sources close to the wall to the 

values determined by the given equations. 

2 is the thickness of the y-layer in which the temperature difference between 

the electrons and ions undergoes a sharp change from the values determined 

by external sources at the channel entry, to the values determinable from 

Joule heat in accordance with the equations written down for the external 

stream. 

1. Fundamental equations and the dynamic boundary layer. The events which occur 

in a fully ionised plasma will be described by the equations obtained in [I], using sim- 

plifications from [2]. For clarity we will deal with the case where a{zt &aere< 1 

(extension to the case of we% - ‘i is easy). Expressions for o,, o+, 7o and 2 are 

derived in [l]. Note,that to fulfill the first inequality it is essential that the ion temper- 

ature Ti should not be more than (mif2m,)‘~ times greater than the electron temperature, Z’,. 

The second inequality [3] is fulfilled under the conditions close to the real ones $H=104 

gauss, T, = 1 ev.) when the number of electrons ne 2 lo’* cm’3. 

The equations which describe tbe behavior of a fully ionised, two-temperature, quasi- 
neutral (Et, Z ?Zi = n>, plasma, under the given assumptions become fl and 21 
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In order to complete the system, equations of state for both electrons and ions should 

be addedpe = nekTet pi = nikT* together with Maxwell’s equations (List of symbols is 

given at the beginning of the article), 

It is easy to check the validity of the following identity 

3 = (0 z -^ j 
enu e e 0.5129 ci Ull/c (1.7) 

In the equations of motion we have ommitted the electron viscosity. This can be done 

[2] when T, < (2mi / m,)“5 Ti for j/enlJ s 1. This criterion should be used, since 

a,~, C$ 1, and by virtue of (I.7).Apartfrom that the term e (ni - ne) E, has been left 

out of the equation of motion and out of the Ohm’s Law e (ni - n&v. It is well known 

that these terms can be neglected in magnetohydrodynamics and it is easy to show that 

the same applies in case of the equations of ma~etohydrod~amic boundary layers. For 

the case where the parameter of mutual influence AZ:! / R - 1, appropriate estimates 

were obtained in 141. 

Let us assume, for the sake of clarity, that the mutual influence parameter Ma/R -., 1, 

whilst the inertia terms are of the same order as the electromagnetic terms. Suppose that 

a velocity change of the order of the velocity itself, takes place within a layer of thick- 

ness L. Also, suppose that the order of magnitude of the inertia term is pu2 / L, that 

of the viscous term is qu / L2, while that of the electromagnetic term is 

iH I c - aUH2 / 8. If we now compare the orders of magnitude of the terms in the 



Boundary layers in a fully ionised two-temperature plasma 515 

equations of motion (1.21, we arrive at 

It is easy to see that when M2 - 1 , the Reynolds number R w 1, and the equation 

of motion has the most general form (1.2). Wh en M’> 1 the Reynolds No. is also R > 1 ; 
viscous terms can be neglected in the main flow. Let us assume that there is a thin layer 

of thickness 6”) in which the change of velocity is comparable with its value. In this 

case the order of magnitude of the viscous terms is equal to Tiu / hu2, while the order 

of the inertial and electromagnetic terms remains as before uUH~ / ~2. 

It is easy to see that the viscous terms can be of the same order of magnitude as the 

electromagnetic ones only within the thin boundary layers of thickness 6, -L / I/R. 

Outside of the boindary layers, the viscous terms can be neglected. It is also apparent 

that when Me / R - 1 the thickness of the viscous magnetohydrodynamic boundary 

layer coincide with that of the conventional viscous hydrodynamic boundary layer. 

Such boundary layers, which in the following we shall refer to as the viscous magueto- 

hydrodynamic boundary layers were investigated in [4 to 61 in the case of single tem- 

perature plasma. 

Note that when Te/Ti - (2mi / me)“‘, then ne -ni [2], and in this case the elec- 

tron viscosity should be taken into account in the equations together with the ionic 

viscosity. When TJTi> (2milm,,J”‘, th en JX~ >r~i, and electron viscosity should be re- 

tained in the equations, while the ionic viscosity can be neglected. Also in the above 

estimates the quantity R, = pUL / qe should replace R. In this case the thickness of 

the viscous boundary layer will be 

Note that the geometry of the flow can be such, that the projection of the electro- 

magnetic terms onto. the normal is equal to zero, and therefore ap / ay = 0, as in con- 

ventional gasdynamids. In general however, ap / ay # 0. 

2. Boundary layer for the difference of temperatures of electrons and ions in a quiescent 
Plasma. To clarify the behavior of the temperatures of electrons and ions close to the wall, 

we shall first consider a special case which is interesting in itself. We shall assume that 

in Equations (1.3) and (1.4) the terms describing convective heat transfer, the work of 

viscous forces and the changes in temperature in the direction of the x-axis can be ne- 

glected. To make things definite we will assume p = const. Then, equations (1.3) and (1.4). 

taking account of (1.71, become 

(2.1) 

(2.2) 

It should be emphasised that the characteristic velocity II, and with it, the Reynolds 

No., have been used in deriving (2.1) and (2.2). As a result of this, the equations (2.1) 

and (2.2) can be regarded as a special case of the general energy equations (1.3) and (1.4), 

written in a nc -dimensional form. It is these equations that are used to describe the 

heat transfer in fully ionised, quiescent, two-temperature plasma in a onedimensional 

framework. It sho Id be noted that the assumption of onedimensionality does not affect 
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the generality of the results which follow(see also the remarks at the end of this section). 

Heat transfer during the motion of a fully ionised two-temperature plasma in a plane chan- 

nel in presence of a magnetic fieId [3] can also be represented by Equations (2.1) and 
(2.2). but in this case a term b (&J / @)*/R, representing work against ionic viscosity, 
must be added. 

It must be emphasised that on the surface of the wall the electron temperature can 

differ from the ion temperature. For simplicity let us assume coefficienta lcd, Xi, and R 

to be constant. Subtracting (2.2) multiplied by R’from Equation (2.1) multiplied by 

xtRo / xa ,we obtain the equation for the temperature differences between the electrons 

and ions 

where 

cp2 = yQRq (1 + xi /x,) E yL2 (1 / xe + 1 /xi) 

From (1.6) we have 

(2.3) 

(2.4) 

(2.5) 

In actual 08888 Xi / X8 < 1, hence cp* can be written 

92 z_Y’R’ z yL2 /Xi 
The physical significance of r$J is quite clear. If d*8? / r$r12 -, &, - 0, (see (2.2)), 

tp2 expresses the ratio of energy transmitted from the electrons to ions during the elastic 

collisions, to that, lost by the ions through thermal conduction. 

IO” cm 
-3 

- 

I - 10” .cm- 3 

2.7.107 2.7.107 

1*5*Po8 8.3~10’ 

1.8‘18 9.7.104 

6.8.108 2.16’1 

1.1.10-a 2.1.10-5 

3.5.10’3 6.4.10’3 

4.9.103 4.9.103 

1.62 1.62 

It is evident that the parameter v2 or an 

analogous one (e.g. yL’/&) appears always 

when the energy equations of a two-temperature 

plasma is written in dimensionless form, Solu- 

tions of actual problems where this parameter 

is computed, are discussed in [3]. 

Let us compute the values of some mag- 

nitudes which we shall require for definite 

values of parameters, in case of a fully ionised 

plasma. Let Te = I ev, Ti = $$ ev, L = 30 cm, 

U = 103 cm/set, mi = 6.4910mz3 gm (atomic weight 39.1), H = IO3 gauss and ne = n, = s. 

Results are given in the adjoining table. We see that ‘p2>1_ Hence the first term in 

Equation (2.3) will be of the same order as the second only when the gradient of the tem- 

perature difference is very great, i.e. if there is a layer adhering to the wall through which 

the temperature changes very sharply in the direction normal to the wall surface. We de- 

note the thickness of such a layer by 8, and in the following we shall refer to it as the 

a-layer. 

Let us now write the orders of magnitude of the first and second term in Equation 

(2.3) within that layer 
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(2.6) 

Here and in the following we shall use the suffix w to denote the quantities close to 

the wall, 6 to denote the values at the distance 6 from the wall, and m to denote the values 

outside the wall, at infinity. 

The quantity I(@ e - 6 i)’ - (6 e - 8 i)‘” 1 - lo e- 6 5 1 (i.e. the difference of tem- 

perature change in s layer of thickness 6 close to the wall which would be of the same 

order as the difference itself) can only prevail in a layer the thickness of which is 

6 --L/9 - jJ J dyQj$q E I(;ci j y. Within the layer whose thickness is 6, the term 

a2 (8, __e $) / &J% should be taken into account in Equation (2.3) while outside this 

layer the term csn be ignored. Also, from (2.3) it follows that outside the layer the tern- 

perature difference is 

;,+\ e,_.ei %--% = (e,-ei)m=&,a$+ (2.7) 

and, that depending on the current density and other 

e,u ei” re,-q>- C9e-6,,w 
parameters it can assume any values. Let us consi- 

der two particular cases in more detail. 

FIG. 1 1. Let (0e -O~)w>(~e -~~)8, i.e. the 

temperature difference close to the wall exceeds that at the distance 6 from the wall. 

Temperature difference 8 B - 9 i, entering the right-hasd side of Expression (2.6) will 

remain at the same order of magnitude as the difference of temperature close to the wall 

(e, - 0 i)W only within the layer of thickness 6 -, L / vy”R E fx, / y. Outside 

this layer the temperature difference between electrons and ions is of the same order as 

the temperature difference at infinity. (Formula (2.7)). 

2. Let (0, - eij8 > (e, - ed”l (for instance near the wall ‘Qew =eiv, hence 

(6, - f3#’ = 0). We shall h s ow, in which layer the temperature difference varies from 

zero at the wall, to (e, - ei)- . Assuming that in the right-hand side of (2.6) 

86 - 8 i = (0, - ei) we conclude that the change again takes place within a layer of 

thickness 6 --L 1 fypRoe 
From this it follows that the difference in temperature of the electrons and ions 

occurring near the wall becomes equal to the temperature difference at m, within a thin 

layer of thickness 6. 

Fig. 1 shows a qualitative picture of the possible behavior of the temperature differ- 

ence between the electrons and ions in a layer of thickness 8 u l/xi / y in a quiescent 

plasma. The right-hand curve depicts the case when there is a large temperature differ- 

ence close to the wall, so that (6 e - fl i)w 9 (0 e -0 i)“. The left hand curve illustrates 

the case where 0 eto = 0 iw. It is evident that in both cases the temperature difference 

close to the wall tends to that at infinity. 

We thus see that in a two-temperature plasma a special kind of boundary layer of 

thickness 6 *Lf jf$% +fXi, can exist* within which a sharp change in 

temperature difference between electrons and ions occurs, ranging from the value of the 
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difference et the wall to that at m. Let us study the way in which the electron and ion 

temperatures change within the a-layer. 

We shall solve Equations (2.1) and (2.2) assuming the transfer coefficients to be 

constant, for two types of boundary conditions 

(2.9) 

Analysis of exact solutions gives a rest& coinciding with that obtained from the above 

qualitative considerations, namely that the difference of temperature of electrons 

and ions changes, within the 6-Iayer, from the values prevailing close to the wall, to 

the wal1, to the value, (0, - 6,)% , constant in the main fIow. When f$W>)&w, ion 

temperature increases with distance from the wall, electron temperature outside the a- 

layer also increases, although it may diminish near the wal1. Thus in the case A the 

electron temperature will decrease with 

Since TX, / pi > 1, the temperature of 

e.v I e* 
electrons in the a-layer will increase when 

c the temperature differences close to the 

FIG. 2 wall are not too great. We shall now consi- 

der two cases. 

1. Let (0, -0i)“> (66 - ei)-. Notice that in case B, the temperature differ- 

ence developing on the wall satisfies this inequality. The solutions show clearly, that 

the ion temperature changes in the S-layer exceed electron temperature changes by the 

factor (0, - es)“. Therefore the temperature difference close to the wall tends to the 

temperature difference at infinity in the a-layer, and this, in general, results from the ion 

temperature change within the layer. 

In fig. 2 we show a qualitative picture of the behavior of ion and electron temperatures 

in a quiescent plasma in the case when (e e - 8 if” 3 @ e - 8 i)” Electron temperature 

varies only slightly within a layer of thickness B - $‘~i,y while ion temperature 

variation is relatively large. Therefore, the temperature difference between the electrons 
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and ions tend to the difference at infinity in the &-layer, and this is mainly due to the 

sharp changes in ion temperature. 

Outside the S-layer the electron and the ion temperature profiles change in a similar 

fashion, so that we always have the difference 0 e - 0 i c (0 e - 8 i)“. 

2. Let the temperature difference close to the wall be small so that the difference 

(0 e - 8 i)” ~ (0 ,, - tj i)” (for example we can have 8 Cw = 8 i”). From the analysis 

of Equation (2.8) it follows that the electron and the ion temperatures vary within the 

g-layer by the same order of magnitude, inferring a temperature difference of electrons 

and ions outside the layer as ((j, - fji)-. 

From this follows that the given temperature difference near the wall tends to the 

constant temperature difference prevailing at some distance away from the wall (at 

infinity), within a thin layer of thickness 6 ML / r/r’&’ E VX~ / ‘f. Also in this 

layer the ion temperature can vary by a magnitude appreciably exceeding the electron 

temperature variations. 

Equations (2.1) and (2.2) describe the behavior of electrons and ions in a quiescent 

plasma in one dimension. However the results obtained will still be valid for a three- 

dimensional case. And indeed, although the terms 6% (0 t: - 0 J / at*, 8 (e e - 0 J / at’, 

will appear in (2.3), because of the inequality (pz s 1, they can be neglected (this can 

be done of course, in the case, when we know in advance that there will be no sharp 

temperature change in the x- and x- direction). 

The term a2 (8, - fIJ / 8@ will remain,because sharp variation in temperature dif- 

ference is expected in the direction normal to the wall. Thus Equation (2.3) remains un- 

altered. The derivatives of the ion and electron temperatures with respect to x and z will 

also enter (2.1) and (2.2). They will not however in general alter the qualitative structure 

of the behavior of the ion and electron temperatures in a thin layer of thickness 6. 

In like manner, terms representing the work of viscous forces will not affect qualita- 

tively, the temperature changes within the a-layer. 

3. The boundary layer in the case when there is temperature difference between 

electrons aad ions in a moving plasma. Let us write the energy equations for the ions and 

electrons (1.31, (1.4) and (1.6) in dimensionless form. From the inequality a,~, (( 1, 

together with the identity (1.7) it appears, that IV, -Vi ] / 6’< j.(For clarity it is as- 

sumedthat j --~ru.fr / C, so that j. - 1). The latter inequality allows considerable 

simplification of Equations (1.3) and (1.4). For instance instead of &Tk / & we can 

write dTk / dt, tensors of viscous stresses can be expressed as the derivatives of the 

average velocity of the mixture v instead of the derivatives of the velocities of each com- 

ponent. For clarity we will regard the flow steady, and the medium incompressible. Ex- 

tension to the case of compressible fluid is easy. 

With the above assumptions, Equations (1.3) and (1.4) become 

(3.1) 
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(3.2) 

For convenience we shall denote the terms in Equations (3.1) and (3.2), by the letters 

wk”, wk”, where k is the number of the term. The order of magnitude of term Wf , des- 

cribing Joule heating, is kf%jt / fi - h. Term W,” , describing the work against the 

forces of electron viscosity cau be of the same order as other terms entering (3.1), for 

instance Joule heating within and only within the dynamic, viscous boundary Iayer; outside 

this layer & / h = 0 aad W: = 0. It can however be shown, that when T, z Ti and 

when inside the viscous layer, the term describing the work against electronic viscosity 

is much smaller than the Joule heating. Actually if we compare the order of megnitnde of 

the term corresponding to work of electron viscous forces and that of the Joule heating 

within the viscous boundary layer, we obtain 

(3.3) 

In the follow~g, for definiteuess, we shall consider the values of parameters for which 

the term representing the work of electron viscous forces is small and can be neglected in 

(3.1). When the electron temperatnre increases, the work against electron viscous forces 

increases too. Evidently cases can be envisaged where ratio (3.3) becomes greater than, 

or equal to unity, and the term in qaestion should then be included in (3.1). 

We will now turn to the behavior of the temperature difference Oe - ()i in the im- 

mediate neighbourhood of the wall (within the ionic temperature boundary layer, see 

section 4). For convenience we will assume R’and R%,i / x, constant, bearing in 

mind that we are considering the behavior of the temperature in the boundary layers close 

to the wall. We shafi further neglect the second derivatives of temperature with respect 

to ‘1 as compared with the derivatives of T). 

Let us subtract (3.2) multiplied by R” from (3.1) multiplied by R% / % . Taking 

into account the previous estimates we arrive at the following (in section 4 it was shown 

that in the number of cases, the term Wi can be neglected in (3.1)) 

i” + 7 &2R” : 
(3.4) 

As before cpa is determined from Formula (2.4). 

Now we shall estimate the order of maattitude of the terms which enter (3.4). In many 

actual cases, as we have already shown, @>> 1. Values of ‘p” are given in the tabfe. 
The first term on the right-hand side which is connected with thermal conductivity, cart be 

of the same order as the second term on the right-hand side only, if the gradient of the tem- 

perature difference is very great, i.e. if, close to the wall there is a layer in which a 

rapid temperature change occurs in the direction normal to the wall. Let us estimate the 
order of magnitude of the thickness of this layer, denoting it by 6. To do this we shall 

write the orders of the first and second terms on the right-hand sides of Equation (3.4) 
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(3.5) 

From this it follows that when [(e e - 8 i)‘l - (0 e - 8 t)” I- 18 e - 8 t 1 the terms 

considered will all be of the same order when 6 --L/v w 1/~i / 7. This a-layer will 

be equivalent to the S-layer discussed in section 2 in connection with the quiescent plasma. 

Within the &layer the first term on the right-hand side of (3.4) should be taken into account, 

outside the layer however, it can be neglected. Note that when h f y” - 1 outside the 

S-layer (6 - & when h / ye - 1, section 4), and when h f y’ > 1 outside the 

aj-layer, Equation (3.4) transforms into an equation for the electron temperature (3.11, SO 

that an increase in temperature difference results from the increase in electron temperature 

for very slight change in the ion temperature. 

The thickness of the a-layer is t/r’ times less that the thickness of the viscous 

boundary layer (section 4). When I/rp - 1 the thickness of the a-layer is of the order 

of at, which is the thickness of the viscous boundary layer. At the same time, within the 

a-layer the order of the term (au/ &f)2 - R. Evidently the order of this term as well as 

that of the derivative &3i/ ~!?q remains as before within the a-layer, and in case when 

6 < 6, (for Y”> 1). Wh en y”>> 1, the component of velocity a has no time to react 

in time the value tlDo within the s-layer. The order of us .Z urn/~. It foIlows from the 

continuity equation that the orders of terms du / ak and ~ZJ f dq coincide, hextoe wit,& 

in the &layer we have 

Evidently the order of magnitude of the derivatives a, / at, and i$jt / a& also 

decreases within the S-layer although it can be shown, that the terms which contain these 

derivatives can be neglected, when the derivatives ore of the order of unity. Indeed, using 

the previous estimates we can easily show that the third term on the left-hand side of 

(3.4) is h I/F times smaller than the third viscous term in the right-hand side of (3.4) 

and, it can be neglected when h vp > 1 . Similarly the first term on the left-hand side 

is h yCp times smaller than the last term on the right-hand side,andcan also be ne- 

glected when ?I, VT> 1 . The last term on the left-hand side is y” y’x times smaller 

than the viscous term (third term on the right-hand aide). The last term on the right-hand 

side is Xi f 3ce times smaller than the penultimate one, and can also be neglected. With 

use of these estimates, equation (3.4) can be simplified. When k - 1, and y* >> 1 

Equation (3.4) assumes a simple form 

13’ tee - ei) __ ‘p2 (0, _ 0 

w 
i -h($2=0 ) (3.6) 

When y”>> 1, convection terms are absent from the equation for the temperature dif- 

ference in the a-layer, since the velocity within this layer is very small. 

It has already been mentioned that ootside the &layer the second derivative of tem- 

perature difference cannot be neglected. Using (3.6) it is easy to write the order of the 

temperature difference on the outer boundary of the &layer 

(3.7) 
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For the values of r”- 1, the temperature difference is described by a differential 

equation which can easily be obtained from (3.4), using the above estimates. Nevertheless, 

the order of the temperature difference at the outer boundary of the a-layer is still 

(I3, -I&)” Z -~ h. The negative sign in (3.7) results from the fact, that in the a-layer 

the ions heat up to a greater degree than the electrons. This statement is connected with 

the assumption that M2 / R - 1, j. - I, and A (au / 87)’ - AR; of course, when 

M2 / R > 1 or jO >> I or (6’~ / il~)~ + R, Joule heating in the S-layer can exceed 

the viscous dissipation, so that the temperature of the electrons will exceed that of the 

ions. 

In section 5 we shall show that in the outside stream the temperature difference is 

Thus, whether the temperature difference close to the wall is et”, = eiw or 

(0, -Cli)W > (f3e --OPY in a layer of thickness 6, the temperature difference, in 

general, varies from the value close to the wall (6, -Oi)lll to thevalue, the modulus of 

which is of the order smaller or equal to the value (0, - ei)O” at infinity. This is also 

valid for values y” - 1, R” >> 1. 

In other words, whatever the temperature difference existing close to the wall, at a 

distance 6 -L / j.$“R” sz VT+ f rom the wall, screening of that temperature 

difference occurs. Also, at the outer boundary of the &layer, the temperature difference 

reaches the values which are defined by the collateral action of Joule heating, viscous 

heating and thermal conductivity when y”> 1, and with the convection terms added, when 

0” - 1 . Let us examine the behavior of electron and ion temperatures within the a-layer, 

using Equations (3.1) and (3.2). 

It has already been shown that the term W: can be neglected from the eqtmtion over 

a large range of parameter variation. Since we are interested in the phenomena within the 

temperature boundary layers, we will neglect the second temperature derivatives with 

respect to x. Resides, it was shown in section 4, that in the electron temperature bound- 

ary layer, the term IV: can be neglected in several cases. It is easy to see that in the 

a-layer this term could have been ommitted from the outset. 

If we carry out further evaluations analogous to those used to simplify Equation (3.4), 

we can show that the terms wre -l/v/r”, w,i-l/~/y<andW~-l/ya 

will be smaller than (when y”>> I) and of the order (when y” - 1) of the terms wr,e - A, 

and wr,i - k (A - 1) respectively. In the case when y”> 1, terms W1e, W1i, and 

IV: can be neglected, and Equations (3.1) and (3.4) assume, within the a-layer, a form 

similar to that of (2.1) and (2.2); it is only because of the influence of the term of viscous 

dissipation in the equation for the ion component, that the difference of the temperatures 

of electrons andions at the outer boundary of the a-layer is of the order f - h/y”, and 

Xe / Xi times greater in terms of the absolute magnitudes, than the temperature differences 

worked out in the problem discussed in section 2 

(3.8) 
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Althnugh these equations are easy to solve, the required result can easily be obtained 

from a qualitative investigation. 

The difference of the temperatures rri the electrons and ions entering Equation (3.&I), 

will be, near the wall, of the order of the difference (8 t: - 8 Jw in case 1, when 

(0 e - Qut s (8 e - 0 $’ and less than, or of the order (ep - 0 i)’ in case 2, when 

(0, - @Jw e.(Re -8J’ . 

Using these estimates and Equations (3.8) we can write the orders of the second de- 

rivatives of the electron and ion temperatures. 

In case I 

In case 2 

Let us write the second derivatives of temperature in the &layer 

~_[(~)“_(~)“l$_*:;l)~s_~(~) 

(3.10) 

(3.11) 

Assuming that (a@, f &# - (at3i f i%#, we can conclude from (3.8) to (3.11) that in 

both cases the ion temperature varies within the a-layer by an amount which is much 

greater then the change in the temperature of the 

electrons, therefore the change in the given tem- 

perature differences between electrons and ions 

from the value near the wall to the value at the 

& 
outer boundary of the &layer is caused mainly by 

j 
the sharp change in the temperature of the ions. 

A possible temperature profile is shown in fig. 3 

which is described in section 4. When y” - 1, 

FIG. 3 the thickness of the &layer coincides with the 

thickness of the viscous and the ionic temperature 

boundary layers. Using the estimates given above, we can easily write the equation an- 

alogous to (3.6) describing the behavior of the temperature differences in the a-layer. It 

is also easy to perform similar estimates, when the order of the term A (au/ t%l)* within 

the a-layer (when y”>> l), differs from AR, and jO s 1, 

4. Electron and ion temperature boundary layers. We will now discuss possible ways 

of simplifying Equations (3.1) and (3.2) in the temperature boundary layers when R”> 1 

and R’%i / X, > I, Note that since ‘Xi / X, < 1. (Form& (2.5)), a situation can 

arise when R”>> 1 and R*xi /x, < 1. Th is case will be discussed at the end of this 

section. 

In section 5 we will show that the temperature difference in the outer stream is 

Be -0,-- M2?$,;"/ 2~y” 
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However, a situation is possible when at the wall and therefore in its immediate proxi- 

mity, or at the channel entry, the temperature difference is found, which is much greater than 

the temperature difference, established in the outer stream. Hence a situation. is possible 

when the terms IF’: and IV: are of next higher order, than the terms W : and W: respectively. 

When we estimate the thickness of ion and electron temperature boundary layers we must 

compare the orders of magnitude of terms containing the second derivative in q with char- 

acteristic (maximum) order of the other terms. 

It has been shown in the preceding paragraph that the large temperature difference 

established close to the wall evens out within the thin a-layer of the thickness 

8 --L / l/lw (i.e. it tends to the values determined by Joule heating, viscosity and 

other terms appearing in the equations). Both, the thickness of the layer, and the temper- 

ature difference within it are known, therefore comparing the orders of the terms Wq and 

W: with that of Wf , we can arrive at the order of the electron and ion temperatures at the 

outer boundary of the 84ayer. as was done in section 3. Terms associated with thermal 

conductivity (W", and W:) are significant not only within the a-layer, but also at some 

distance outside it, within the temperature boundary layers where the term Y” (0 e - 8 i) 

is smaller than or of the same order as the terms describing Joule or viscous dissipation. 

Now let us estimate the order of magnitude of these distances. They will, in fact, be the 

thicknesses of the temperature boundary layers. Terms depending on electron thermal con- 

ductivity can be of the same order as the terms describing Joule heating only, when the 

gradient &a / dq is very large, i.e. when there is a layer near the wall, in which a rapid 

change in electron temperature takes place in the direction normal to the wall. We will 

call such a layer the electron temperature boundary Iayer, and denote its thickness by 6,. 

We will assume that 8% e / a?’ - I? and that this term can be neglected in com- 

parison with @Q, / 898 - 6,-Z. Comparing the orders of the terms Wz and wae,we con- 

clude that the transport of heat due to electron thermal conductivity will be of the same 

order 8s heat dissipated by Joule heating only, when the electron temperature boundary 

layer thickness satisfies the following 

In section 1, we have estimated the quantities determining the viscous boundary 

layer, In this connection we should remember, that the thickness of the dynamic bound- 

ary layer is given by 6, -4 f Jfg. 

Let us now compare the order of the thickness 6e with that of the viscous boundary 

layer, when .&P / R - f 

(4.2) 

The orders of the quantities ?ti / X, and h are shown in the table. It is clear that 

in many practical cases k 6 1, f%P J R _ 1 .Thus in a fully ionised plasma 6, > 6,, 

i.e. the thickness of the electron temperature boundary layer is very much greater than that 

of the viscous boundary layer. In the previous section it was shown that the thickness of 

the a-layer was less than (when I/p > 1) , or of the same order as (when l/p - 1)) 

the thickness of the viscous boundary layer. Hence, from the inequality 6, > 6, it 

follows, that 6, > 6 is even more pronounced. Thus in practice, the thickness 6e can 
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be measured from the wall just as in the case when &‘re - w&a. Generally speaking, 

the first term in Equation (3.1) is of the same order of magnitude as the term describing 

Joule heating. Outside the viscous boundary layer u = 0 and the term Wt can be neglected. 

The order of the term Wt within the viscous boundary layer is equal to 6, / 6,. Compar- 

ing the orders of magnitude of the terms W: and IV:, we have 

It csn be seen from the table that this rstio is,in a fully ionised plasma, very much 

smaller that unity in many actual cases, therefore Wt in Equation (3.1) can be neglected. 

Now let us estimate the orders of the terms in Equation (3.2). Terms describing the 

ionic thermal conductivity can be of the same order as those describing the viscous ionic 

dissipation, only in the case, when the gradient aei / &J is very large, Le. if there is a 

layer near the wall, exibiting a sharp temperature variation in the direction normal to that 

wall. This layer will be referred to as the ionic temperature boundary layer. Its thickness 

will be denoted by 6, (remembering, when wai > W,i , the thickness of the ai - layer 

is measured not from the wall, but from the outer boundary of the 8-layer). As in the case 

of the electron layer, we neglect the term 8% i / at2 as compared with 4% i / ,$a. 

Comparing the orders of the terms Wi and W: , we come to the conclusion that heat transport 

due to the ionic thermal conductivity will be of same order as the heat evolved in the 

work against the forces of ionic viscosity only, if the thickness of the ionic boundary 

layer satisfies the following relation (remebering that w ,I B - 1) 

Now let US compare the order of the quantity ai with the thickness of the viscous 

boundary layer 

i$,/&--jfO.246h- ‘J2 v/x 

Using the data from the table we find, that the thickness of the ionic temperature 

boundary layer, is of the same order as that of the viscous boundary layer. if we compare 

the thickness of the b-layer with the thickness of the ionic temperature boundary layer 

(M2/fi w-1), we find that, when y” / ?L > 1 the thickness 6i > 6, , while when 

r”/il- 1 ,the thickness & - 6. We should also remember that in a highly ionised 

plasma y” > 1, and h 6 f , therefore when Fief > w,i .the thickness of the 

Si-layer can be measured from the wall. This can also be done when yQ - 1. 

Usually, the order of magnitude of the first term in Equation (3.2) is the same as that 

of the term representing viscous dissipation. The second term in (3.2) is of the order of 

the ratio 6,. / &. If we compare the second term with the fifth we get 

(4.6) 

for the values of the parameter, for which this ratio is less than unity, and the second term 

in Equation (3.21, can be neglected. 

The equations representing the electron and ionic temperature boundary layers take 
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the following form 

(4.7) 

(4.8) 

Equation (4.7) represents the case, when the ratio Wxe / w,” - 1 Formula (4.3)). 

Now let us compare the thicknesses of the electron and ionic temperature layers 

(4.9) 

It is clear from the table, that in a fully ionised plasma where xi / X, < 1, the 

electron temperature boundary layer is much thicker than the ionic temperature boundary 

layer. We should note that increase in the ratio 8, /et leads to the increase in the ratio 

6, / 6i h’l w I e when Ma/R increases the thicknesses of the electron and ionic temperature 

layers decrease. 

Figure 3 gives a qualitative picture of the possible behavior of the ion and electron 

temperatures in a moving plasma, when JJ”>> 1 (under these conditions 8 4 8, < 6,) 

and 0 c”’ WC”‘. The electron and ion temperatures vary from the values at the wall to the 

values prevailing in the outer flow, over the electron (of thickness se) and ionic (of 

thickness 6,) temperature boundary layers respectively. In a layer of thickness 6 a sharp 

change in the ionic temperature takes place, from the value close to the wall to the value 

determined by ionic viscous dissipation in accordance with the equations given above. 

Outside the a-layer but within the ionic temperature layer, the ionic temperature will 

increase ; the temperature difference is described by Equation (3.4) in which the term 

with the second order derivative can be neglected. Outside the ionic temperature layer, 

Equation (3.4) transforms into (3.1) and the temperature difference varies only at the 

expense of temperatures of the electrons with the ionic temperature remaining constant, 

while the ion temperature obeys the equations for the external stream. It should be noted, 

that the magnitudes of the ratios 6,/8, = ~/XX > 1, 6i / 8 9 1 (see the table and 

fig. 3) are considerably reduced. 

If R”>> 1 while R%i / X, < ‘i, then the ionic temperature boundary layer exists, 

and as before, is described by Equation (4.8) while the electron temperature boundary 

layer is absent. The electron temperature should then be determined from Equation (3.1) 

in which the work against forces of electron viscosity (estimate (3.3)), and the second term 

(estimate (4.3)) can, inmost cases, be neglected. Equation (3.1) for electron temperatures 

(elliptical) becomes then 

(4.10) 

5. Equations for electron and ionic temperatures In the external stream. Let us write 

the equations for electron and ionic temperatures in the external stream in the form 

3 a%! 
YU x 

= F hj,* - 7’ (6, - f-3;) (5.1) 
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From the table it is evident that y”> I, over a wide range of variation of the para- 

meters, The large values of y” define the specific behavior of electron and ion tempera- 

ture differences 0, - fji along the channel. Subtracting (5.2) from (5.1). we obtain 

_3_ u a (%? - f4) 
2 a: 

= F hjo2 - zro (9, - eg) (5.3) 

The term on the left-hand side of (5.3) can be of the same order as the second term 

on the right-hand side only within a thin layer, which will be referred to as the y- layer, 

and which has a large temperature gradient. Outside this y-layer 

0, - Oi = (0, - ei)m = z ajo go 

A. Suppose that the difference (8e - @,)r >> (6, - @,Im. is given at the cross-section 

t = &. It is easily seen that the difference (0, - fj& tends to the value 

_ ~{)ob 

E!:e 8 

in a thin y-layer of thickness 1 - zu / 4~0 while outside this layer we 

t e- ei=(e,-sl)? 
8. Now suppose that the difference 

(ea _ ei)r < (0, - et)” is given at the 

cross-section [= & (for instancewe could have (8, - 00, = 0). The difference 

8, -ei tends to the value (0 a - 8 i)” within the thin y-layer of the same thick- 

ness 1 - 3Lu / 490. 

It is also possible to predict the queIitative behavior of the temperature profiles f3e 

and ei within and without the y-layer in the manner analogous to that in section 2. when we 

studied the behavior of the temperatures close to the wal1 in a quiescent plasma. 

It should be noted that at large values of y” in the y-layer, the temperatures of the 

ions and electrons can vary rapidly. In general therefore, such values of the parameters are 

possible, for which the thermal conductivity of the components should be taken into ac- 

count, when determining the temperature profiles of electrons and ions inside the y-layer. 

We should also note that, when t( “U y”, 6”/L * 1. When this happens, the plasma flowing 

through the channel passes through it so rapidly, that the relaxation of electron and ion 

temperature takes place along the whole length of the channel. When I( >> y” the plasma 

travels so rapidly, that in practice, the relaxation does not have time to take place. 

It should be pointed out that the presence of walls is not an essential requirement 

either in the formation of the a-layer nor in the case of the y-layer in the external stream, 

Any temperature difference caused by the outside sources at any channel section will 

attain the values, which are determined, generally speaking by the combined effect of 

Joule heating, viscosity, convection and thermal conductivity within the thin layer of 

thickness 8 in agreement with what was said in section 3. 

Note also the assumption made about the incompressibility of the medium in the pres- 

ent studies is not in itself significant,and was only done to cut down the length of the 

equations. 

6. Method of ap~oximate estimation of the temperature boundary layers. We can use 

the above estimates of the thickness of the boundary layers for a suggested approximate 

method of solving the boundary layer equations. It should be noted that, in general, even 

in the case of incompressible fluid, the dynamic problem is not divorced from 
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the thermal one. This is because the coefficient of transport depends on the electron and 

ion temperatures. Let us assume that the problem is solved for the external stream. From 

section 4, it follows, that 6, > 6i - 6,. Within the ?ji-layer the ion temperature 

satisfies (4.8). Outside the ai-layer the ion temperature satisfies (5.2) for the external 

stream. Everywhere within the 6, - layer and also outside the ai-layer, the electron temper- 

ature satisfies Equation (4.7) for th e electron temperature boundary layer. 

Let us work out the electron temperature distribution in the first approximation. 

Into Equation (4.7) for electron temperature let us insert the values of all the para- 

meters equal to those in the external stream, i.e. velocity equal to that in the outside 

stream, likewise ion temperatures, etc. 

Knowing the distribution of all the parameters in the outside stream it is possible to 

find the temperature distribution of the electrons in the electron boundary layer, from the 

equation obtained. This distribution will be, in general, close to the real one everywhere 

with the exception of a region close to the wall and of thickness of the order of the ion 

temperature layer. In order to find the ion temperature distribution in the ion boundary 

layer and the velocity distribution in the viscous boundary layer, we must insert into 

Equation (4.8) for ion temperature and into (1.2) for the equations of motion, the electron 

temperature found in the approximate method described above. Note here that the elec- 

tron temperature not only enters the relaxation term y” (0 e --- 8 t), but also the transport 

coefficient. Solving these equations together with equations of continuity, of state, and 

the Maxwell equations we can, to a first approximation find the distribution of velocity 

components, of the ion temperature, the density and other quantities within a layer of 

thickness 6i - 6,,. 

Improved values of electron and ion temperatures can be obtained by subsequent ap- 

proximations. Thus to obtain the electron temperature distribution in a second approxi- 

mation, values from the first approximation of ion temperatures, velocity components, etc. 

obtained from the solutions of the viscous boundary layer problem, should be inserted in 

(4.7). After that, the solution of the equation for the electron temperature gives us the 

second approximation to the electron temperature distribution in the electron boundary 

layer. 

Using the second approximation for the electron temperature it is possible to construct, 

by the same method, the second approximation for the ion temperatures, velocitiee etc. 
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